Image feature matching
ยท
๐ŸŒƒ computer vision
โ˜๏ธ good feature ๋ž€ ๋ฌด์—‡์ธ๊ฐ€? - ์กฐ๋ช…์˜ ์ƒํ™ฉ์— ์ƒ๊ด€ ์—†์ด ๋™์ผํ•œ feature๋ฅผ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. - ์œ„์น˜์— ์ƒ๊ด€ ์—†์ด ๋™์ผํ•œ feature๋ฅผ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. - ํฌ๊ธฐ์— ์ƒ๊ด€ ์—†์ด ๋™์ผํ•œ feature๋ฅผ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. - ํšŒ์ „ ์ƒํ™ฉ์— ์ƒ๊ด€ ์—†์ด ๋™์ผํ•œ feature๋ฅผ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. - Perspective transform์— ์ƒ๊ด€ ์—†์ด ๋™์ผํ•œ feature๋ฅผ ์ถ”์ถœํ•ด์•ผ ํ•œ๋‹ค. - ๊ณ„์‚ฐ๋Ÿ‰์ด ๋„ˆ๋ฌด ๋งŽ์œผ๋ฉด ์•ˆ๋œ๋‹ค. - ๋ฉ”๋ชจ๋ฆฌ ์†Œ๋ชจ๊ฐ€ ํšจ์œจ์ ์ด์–ด์•ผ ํ•œ๋‹ค. โ˜๏ธ ORB oFast detector + r-BRIEF descriptor ์ด ๋‘ ๊ฐ€์ง€๊ฐ€ ํ˜‘์ณ ์žˆ๋Š” ํ˜•ํƒœ์ด๋‹ค. FAST : radius๊ฐ€ 3์ธ ๊ฒฝ์šฐ, 9๊ฒŒ์˜ ์—ฐ์†๋˜๋Š” ํ”ฝ์…€ ํฌ๊ธฐ๋ฅผ ๊ณ ๋ คํ•œ๋‹ค. BRIEF : ํ•œ ํ”ฝ์…€์ด feature๋กœ ํŒ๋ช…์ด ๋‚ฌ์„ ๋•Œ..
Histogram Equalization
ยท
๐ŸŒƒ computer vision
Histogram Equalization ๋ž€? โžก๏ธ ์šฐ๋ฆฌ ๋ง๋กœ๋Š” histogram์„ ์ •๊ทœํ™” ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. โžก๏ธ ๊ฐ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ์˜์ƒ์„ ๊ตฌ์„ฑํ•˜๋Š” ํ”ฝ์…€์˜ ์ „์ฒด ๊ฐœ์ˆ˜๋กœ ๋‚˜๋ˆˆ๋‹ค. โžก๏ธ bin์˜ ๊ฐœ์ˆ˜๋ฅผ ์ž˜ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. โžก๏ธ ๋ฐ๊ธฐ ๋˜๋Š” color ๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ด๋ฏธ์ง€์— ์ ์šฉํ•œ ๊ฒƒ์ด๋‹ค. * histogram์ด ํŠน์ • ์˜์—ญ์— ๋„ˆ๋ฌด ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉด contrast๊ฐ€ ๋‚ฎ์€ ๊ฒƒ์ด๋‹ค. ** histogram์ด ๊ณจ๊ณ ๋ฃจ ๋ถ„ํฌ๋˜์–ด ์žˆ์„์ˆ˜๋ก high contrast๋ผ๊ณ  ํ•˜๋Š”๋ฐ, high contrast๋ฅผ ์ข‹์€ ์ด๋ฏธ์ง€๋ผ๊ณ  ํ•œ๋‹ค. Histogram ๊ณผ bin [๋ฌธ์ œ] ๋งŒ์•ฝ, ๋‹ค์Œ ํ‘œ์™€ ๊ฐ™์€ ์ด๋ฏธ์ง€๊ฐ€ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด๋ณด์ž. ์ด ๋•Œ intensity level์€ 16[0,15], bin์˜ ๊ฐœ์ˆ˜๊ฐ€ 4๋ผ๋ฉด, ๊ฐ bin์€ ? [ํ•ด์„ค] ์ด ..
Spatial Filtering
ยท
๐ŸŒƒ computer vision
spatial filtering ์ด๋ž€? -> spatial filter๋ฅผ ํ™œ์šฉํ•ด์„œ ์ „์ฒ˜๋ฆฌ ํ•˜๋Š” ๊ฒƒ. spatial filtering์˜ ์ข…๋ฅ˜ 1. Averaging filter - ์ฃผ๋ณ€ ๊ฐ’์˜ ํ‰๊ท ์œผ๋กœ ๋Œ€์ฒด ์‹œํ‚จ๋‹ค. - random noise๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. - image๊ฐ€ ํ๋ฆฟํ•ด์ง„๋‹ค. (blurs an image) [์‚ฌ์šฉ ์˜ˆ] ํ˜•์‹ : blur( input image, output image, size of kernel); blur( image, result, Size(5,5) ); 2. Gaussian filter - ๊ฐ€์ค‘์น˜ ํ‰๊ท ์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ๊ฐ€์ค‘์น˜๋ฅผ gaussian filter๋ฅผ ์‚ฌ์šฉํ•ด์„œ ํ•œ๋‹ค. [์‚ฌ์šฉ ์˜ˆ] GaussianBlur( image, image, size of kernel,..
Intensity transformation
ยท
๐ŸŒƒ computer vision
intensity transformation๋ž€? โžก๏ธ ์ด๋ฏธ์ง€์˜ ๋ฐ๊ธฐ๋ฅผ ๋ณ€ํ™˜ํ•˜๋Š” ๊ฒƒ. intensity transformation์˜ ์ข…๋ฅ˜ intensity transformation์—๋Š” ํฌ๊ฒŒ 3๊ฐ€์ง€ ์ข…๋ฅ˜๊ฐ€ ์žˆ๋‹ค. 1. negative - ์ด๋ฏธ์ง€์˜ ์–ด๋‘์šด ์˜์—ญ์„ ๋ฐ์€ ์˜์—ญ์œผ๋กœ, ์ด๋ฏธ์ง€์˜ ๋ฐ์€ ์˜์—ญ์„ ์–ด๋‘์šด ์˜์—ญ์œผ๋กœ ๋ฐ˜์ „ ์‹œํ‚ค๋Š” ๊ฒƒ. [๊ณต์‹] โžก๏ธ L - 1 - r r : input, ์˜์ƒ์˜ intensity level์ด [0, L-1] ์‚ฌ์ด์ธ ๊ฒฝ์šฐ 2. log transformation - ์–ด๋‘์šด ์˜์—ญ์— ์ˆจ์–ด ์žˆ๋Š” detail์„ ๋” ์„ ๋ช…ํ•˜๊ฒŒ ํ•˜๋Š” ๊ฒƒ์— ์ž์ฃผ ์‚ฌ์šฉ๋œ๋‹ค. - ๋‹จ์ˆœํžˆ ์˜์ƒ์„ ๋ฐ๊ฒŒ ๋งŒ๋“œ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. - ๋ฐ์€ ๋ถ€๋ถ„์˜ detail์€ ์ค„์–ด๋“ค๊ณ , ์–ด๋‘์šด ์˜์—ญ์˜ detail์€ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. - ์–ด๋‘์šด ..
Line detection
ยท
๐ŸŒƒ computer vision
ํ•œ ์  (x1, y1)์ด ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ์ง์„ ์€ y1 = a*x1 + b ์ด๋‹ค. ์ด ์‹์€ b = -a*x1 + y1 ์œผ๋กœ๋„ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฒฐ๊ตญ, ํ•œ ์ ์ด ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ์ง์„ ์„ b์™€ m์— ๋Œ€ํ•œ ํ‰๋ฉด์—์„œ ํ•˜๋‚˜์˜ ์ง์„ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. y1 = a*x1 + b โžก๏ธ b = -a*x1 + y1 ์‹์„ ์ด๋ ‡๊ฒŒ ๋ฐ”๊พธ๋ฉด, a, b ํ‰๋ฉด์—์„œ ์ง์„ ์ด ๋‘ ๊ฐœ ๋‚˜์˜ค๊ฒŒ ๋œ๋‹ค. ์ด๋•Œ ๋‘ ์ง์„ ์˜ ๊ต์ ์€ ๋‘ ์ ์„ ์ง€๋‚˜๋Š” ์ง์„ ์„ ์˜๋ฏธํ•˜๊ฒŒ ๋œ๋‹ค. ์ฐธ๊ณ  ์‚ฌ์ดํŠธ https://wkdtjsgur100.github.io/Hough-Transform/